3

2

Mark schemes

4	$\overline{}$	4	
ı		7	
ч	•		١.

(a) Electron is removed from 1(s) (rather than 2(s))

Mark independently

Lower in energy (than 2s)/Less/No shielding/closer to the nucleus

Stronger attraction between nucleus and outer electron

(b) Similarity: produce hydrogen/produce gas/produce white solids/produce Mg²+ compounds/produce a base

Difference: magnesium oxide formed with steam and magnesium hydroxide formed with (cold) water

(c) Oxidation state of Ca increases, so Ca is oxidised OR

Oxidation state of Ca from 0 to +2, so Ca is oxidised

If no marks awarded, then correct oxidation states of Ca **and** H before **and** after the reaction scores 1 mark

Oxidation state of H decreases, so H is reduced OR

Oxidation state of H from +1 to 0, so H is reduced

[7]

2

1

1

1

Q2.

(a) An electron acceptor

Do not accept electron pair acceptor or gain of electrons

(b) $Cu \rightarrow Cu^{2+} + 2e^{-}$

Ignore state symbols, even if incorrect. Accept multiples

(c) $NO_3^- + 2 H^+ + e^- \rightarrow NO_2 + H_2O$

Ignore state symbols, even if incorrect. Accept multiples

(d) $Cu + 2 NO_3^- + 4 H^+ \rightarrow Cu^{2+} + 2 NO_2 + 2 H_2O$

Ignore state symbols, even if incorrect. Accept multiples

1

1

3

2

1

Q3.

(a)
$$Cl_2 + H_2O \rightleftharpoons HCI + HOCI$$

 $Allow \rightarrow$

OR

(b) $Cl_2 + 2 NaOH \rightarrow NaCI + NaOCI + H_2O$ Allow multiples

(c) M1 $2 \text{ Cl}^{2} \rightarrow \text{Cl}_{2} + 2 \text{ e}^{-}$ Allow multiples

M2 2
$$ClO_3^-$$
 + 12 H⁺ + 10 e⁻ $\rightarrow Cl_2$ + 6 H₂O

M3 2
$$ClO_3^-$$
 + 12 H⁺ + 10 $Cl^- \rightarrow 6 Cl_2 + 6 H_2O$
M3 Allow
 ClO_3^- + 6 H⁺ + 5 $Cl^- \rightarrow 3 Cl_2 + 3 H_2O$

(d) NaCl + $H_2SO_4 \rightarrow HCl + NaHSO_4$

OR

2 NaCl +
$$H_2SO_4 \rightarrow 2$$
 HCl + Na_2SO_4

Base/proton acceptor

(e) CI

Ignore absence of minus sign

- (f) 180°
 - (2) <u>bond pairs</u> repel to be as far apart as possible

 Allow (2) bond pairs repel equally

 Ignore linear

[10]

1

1

1

Q4.

(a) Electron acceptor / gains electrons

Do not allow

electron pair acceptor / gain of electrons

(b) Oxidation half equation

$$2~l^- \rightarrow l_2 + 2~e^-$$

Allow multiples.

Reduction half equation

$$2~IO_3^- + 12~H^+ + 10~e^- \rightarrow I_2 + 6~H_2O$$

Award 1 mark if the two equations are shown transposed

(c) Equation:

6 l^+ + 6 H^+ + H₂SO₄
$$\rightarrow$$
 S + 3 l₂ + 4 H₂O

Allow 6HI

Allow $6I^- + 8H^+ + SO_4^{2-}$

Foul smelling gas $-H_2S$ / hydrogen sulphide

[5]